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by

A. J. Smits

Gasdynamics Laboratory
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Princeton, N.J. 08544

Summary

This is the final technical report for NASA Grant 3-1032. The research

performed under this grant was an experimental program to help develop

turbulence models for shock wave boundary layer interactions. The

measurements were taken in a Mach 3, 16° compression corner interaction, at

a unit Reynolds number of 63 x 106/m. The data consisted of heat transfer

data taken upstream and downstream of the interaction, hot wire measurements

of the instantaneous temperature and velocity fluctuations to verify the Strong

Reynolds Analogy, and single- and double-pulsed Rayleigh scattering images to

study the development of the instantaneous shock/turbulence interaction.
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1. INTRODUCTION

The aim of this research work was to perform experimental work which

will benefit the NASA-Lewis effort to improve turbulence models for complex

supersonic flows. In particular, we were interested in developing the capacity

to make accurate calculations of shock wave turbulent boundary layer

interactions.

NASA-Lewis Grant NAG 3-1032 "Turbulence Modeling in Shock Wave

Turbulent Boundary Layer Interactions" started on 4/5/89, with the aim of

improving the prediction of the flow-field features of unseparated interactions.

Attention has focussed primarily on the investigation of a Mach 3, 16 degree

compression corner interaction, at a unit Reynolds number of 63 x 106/m.

Since the research was directed towards a fundamental understanding of the

flow field behavior, and the development of scaling laws for changes in Mach

number and Reynolds number, we expect that the results will be applicable

over a wide range of conditions, especially at higher Mach number.

The particular shock-wave boundary layer interaction selected for study

under this Grant has been investigated in the past by Settles, Fitzpatrick and

Bogdonoff (1979), who documented the mean flow, and Smits and Muck (1987),

who studied aspects of the turbulence evolution. Nevertheless, our

understanding of this flow, and other complex flows, is still rather limited. As

a result, the computations display severe shortcomings. These inadequacies were

well documented at the Stanford Conference on Complex Turbulent Flows

(Kline et al. 1981), and in broad terms the situation has not improved very

much in the intervening decade. The situation is well illustrated by the

results reported for compression corners by Visbal and Knight (1983) and for

curved wall compressions by Degani and Smits (1990). See Figure 1 for some

typical results. Algebraic turbulence model are usually inadequate, but it is

not immediately clear how better results may be obtained. One- or two-

equation models can lead to better results, but only under some circumstances

(Horstman et al. 1977, Degani and Smits 1990), and currently it appears that

no fully reliable methods are available for the prediction of these complex

flows.

One of assumptions commonly made in developing turbulence models for

high speed flows deserves some particular attention, that is, the assumption

that the temperature and velocity fields are coupled according to the Strong
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The analysis by Smits et al. (1989) suggested that there must exist some phase

difference between the density and velocity fields, even in an undisturbed

boundary layer. In the present study, the instantaneous form of the SRA was

tested for the first time in any flow. It was studied both in the undisturbed

Mach 2.9 high-Reynolds-number turbulent boundary layer upstream of the 16°

compression corner, and in the strongly perturbed flow downstream of the

shock-wave/boundary layer interaction (Smith and Smits, 1990, 1992).

Another aspect to consider in modelling these flows is the unsteadiness of

the shock. Shock-wave unsteadiness appears to be a characteristic feature of

shock wave boundary layer interactions, in two and three dimensions (see, for

example, Dolling and Dussauge 1990), and it may exert a considerable distorting

influence on the turbulence behavior in the downstream flow (Smits and Muck

1987). In the present study, the interaction of the turbulence with the shock

was studied using Rayleigh scattering, which makes possible the imaging of the

instantaneous density field. The spanwise wrinkling of the shock (previously

inferred from spanwise wall pressure measurements by Muck, Dussauge and

Bogdonoff 1985) was visualized using this technique (Smith et al. 1990). These

observations were the first of their kind in this class of interactions. These

data have been extended recently to visualize the compression and distortion

of turbulent motions as they pass through the shock (Forkey et al. 1993).

Finally, the wall heat transfer in shock wave boundary layer interactions

is not often studied, and the calculation of heat transfer rates usually requires

the assumption of some form of the Reynolds Analogy. The measurements of

the mean heat transfer were reported by Evans and Smits (1992) and Evans

(1992). The results indicate that the Reynolds Analogy factor increases by

over 70% through the interaction and shows no sign of relaxation.

2.2 Experimental Conditions

The experiments were conducted in the 8" x 8" Mach 3 blowdown tunnel

at the Gasdynamics Laboratory of Princeton University. Tests were made on

the tunnel floor at where the incoming boundary layer was approximately 1.0"
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thick. The boundary layer was fully turbulent. Transition occurred naturally,

and no trips were used. A 16° compression ramp was used to generate the

interaction. Data were taken at one flow condition, namely a stagnation

pressure of 100 psia, generating a nominal freestream Reynolds number of 63

million per meter (19 million per foot). See also Table 1.

2.3 Results

The simultaneous measurements of the temperature and velocity

fluctuations were obtained using a new dual sensor hot wire probe (Smith and

Smits 1990). Here, both hot wires are operated in the constant temperature

mode, one at an overheat ratio of 1.1, and the other at an overheat ratio of

0.3 or 0.4. Under these operating conditions the signals may be decomposed

into velocity and density. The time-averaged results are in good agreement

with previous data at similar Mach numbers, giving some confidence in the

accuracy of the technique. The time-averaged data are given in figures 2 and

3. Some time traces of velocity and temperature are shown in figure 4, and the

strong correlation between the two signals is obvious. The correlation

coefficients shown in figure 5 are close to one, and the validity of the

instantaneous (and time-averaged) form of the SRA seems confirmed for this

flow, even in the highly disturbed flow field downstream of the interaction.

Instantaneous, quantitative visualization of the density field in a cross-

section of the flow using Rayleigh scattering (Smith et al. 1990). An example

of an image obtained using this technique is shown in figure 6. This image

was made possible by using a high-power, Nd:YAG laser operating in the far-

ultraviolet in conjunction with a high-sensitivity, far-ultraviolet camera. By

focusing the laser into a thin sheet of light and passing it through the wind

tunnel, cross-sectional images of the air density can be recorded by direct

Rayleigh scattering. For the pictures shown here, the illumination is with a

Quantel International YG661 laser operating in the vicinity of .266 microns

with a pulse duration of 4 nsec, so the cross-sectional image is frozen in time.

The 8"x8" Mach 2.9 tunnel was fitted with UV transmitting quartz windows so

that the laser sheet could be passed through the flow field. The high-

sensitivity camera observed the scattering at 90 ° and images could be recorded

up to the camera framing rate of 10 Hz.

The presence of water can have a strong effect on the interpretation of
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these images, even for extremely low water concentrations (parts per million).

Upstream of the nozzle, where the water is in the form of water vapor, its

Rayleigh cross section is small. As the flow expands through the nozzle, the

water molecules can agglomerate into very small ice crystals of the order of

30 nanometers in diameter (Wegener and Stein 1968), and these small particles

dominate the Rayleigh signal. Quantitatively, therefore, the images show the

density of these ice crystals rather than the density of air. Now, it appears

that the ice crystal density is nearly proportional to the local air density,

except in regions where the temperature rises to the point where the ice

returns to the vapor phase. There are two main consequences: we lose some

resolution near the wall, where the frictional heating increases the

temperature, and strong shocks become visible as lines separating bright zones

(low temperature) from dark zones (high temperature).

For each image shown in figure 6a, the Reynolds number, based on the

incoming boundary layer momentum thickness, was about 80,000. The scale,

from top to bottom, is about 60 mm and the resolution is on the order of

several hundred microns. The boundary layer thickness is approximately 28

mm. The flow is from right to left, and the images show the incoming

boundary layer on the left, the unsteady separation shock (the line coming

down from the left), and the highly distorted compressed boundary layer

downstream of the shock.

In a qualitative fashion, these images show that there are well-defined

individual structures located in the incoming boundary layer. The dark areas

of the image represent low density regions characteristic of high temperatures.

The bright areas are the high densities found in the free stream. Intermittent

penetration of freestream fluid deep into the boundary layer is clearly visible.

These large scale motions can interact strongly with the shock wave, as shown

in the figures, and it appears that the unsteady shock motion is closely

coupled with the strength and frequency content of the incoming boundary

layer structure. Spanwise images (an example, taken in a 240 corner flow, is

given in figure 6b) clearly show the spanwise rippling of the shock sheet. As

far as we know, these images are the first to reveal the instantaneous shock

structure in compression corner interactions, and the first to show the strong

influence of the turbulence on the unsteady shock motion. At this stage, the

particular characteristics of the turbulence that result in the strong coupling is
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not known, although we suspect that only large motions, with a high degree of

coherence can interact directly with the shock. Further data analysis may

lead to deeper insights. For example, image processingtechniques can be used

to generate space correlations of the fluctuating density field, and reveal the

dynamic connection between the incoming motions, the shock motion, and the
turbulence distortion.

More recent work has used double-pulsed Rayleigh imaging to visualize

the evolution of the turbulent boundary layer motions (Cogne et al. 1993),and

the distortion of the incoming motions as they pass through the shock

generated by the 16° compression corner. The strong shearing and

compressionexperiencedby the incoming turbulence is evident from the images

(seeFigure 7 for a typical image).

Thin film heat transfer gaugeswere used to measure the mean wall heat

transfer rates in the boundary layer. These data were obtained using an array

of eight gaugesare being used, supplied by Dr. Mike Dunn of Calspan. These

are platinum sensors,with a thickness of 0.15 micron and a spatial resolution

of approximately 1 mm. They were operated in a constant current mode, with

a current of 3 mA, and the frequency responsewas calculated to be in excess
of 1 MHz, although noise considerations reduce the useful bandwidth to

something less than 200 Hz-200 kHz. The primary question was whether these

gaugesare sensitive enough, and have sufficient frequency response, to allow

accurate heat transfer measurements in this flow, without heating or cooling

the wall, that is, in near-adiabatic conditions (the difference between the

ambient temperature and the recovery temperature is of the order of a few

degrees). Data were obtained in the upstream boundary layer, and

downstream on the ramp face (Evans and Smits 1992, Evans 1992). A

correction scheme was devised to account for the fall in stagnation

temperature during the run, and for the breakdown of the semi-infinite

assumption in the data reduction (Evans 1992). The results, shown in Figures
8-10, seem to indicate that accurate Stanton number values can be obtained.

The most impressive result is the large increase in the Reynolds Analogy

factor observed through the interaction. At the present time, the signal-to-

noise ratio is too high to enable accurate measurementsof the instantaneous
heat transfer rate to be made.



2.4 Conclusions

For the Mach 3, 16 ° compression corner flowfield studied here:

1. The Strong Reynolds Analogy applies to a high level of accuracy, even in

the instantaneous sense.

2. Strong turbulence/shock interactions have been observed using Rayleigh

scattering, including the spanwise rippling of the shock sheet.

3. It is possible to obtain accurate mean heat transfer data using thin-film

gauges in this flow, without heating or cooling the wall.

4. The compression and shearing of turbulence by the interaction with a

shock has been observed directly using double-pulsed Rayleigh scattering.
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Po (Nt/m2) 6.8 x 105

T o (°K) 265 + 5

M e 2.84+ 0.04

U e (m/s) 575 + 20

(U) e (kg/m2s) 500+ 30

Ree/m 6.5 + 0.5 x 107

(mm) 26 + 1.5

Cf .001 + .0001

Table 1. Flat plate, zero pressure gradient, adiabatic wall,
turbulent boundary layer (Spina & Smits 1987).
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Figure 2. Results from dual hot-wire technique. Mass-flux and temperature
rms levels. Circles represent incoming boundary layer data, squares represent
data taken 2.8delta downstream of the corner. Incoming boundary layer
parameters given in Table 1.
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Figure 3. Results from dual hot-wire technique. Velocity and temperature rms
levels in similarity coordinates. Circles represent incoming boundary layer data,
squares represent data taken 2.8delta downstream of the corner. Incoming
boundary layer parameters given in Table 1.
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Figure 4. Results from dual hot-wire technique. Time traces of velocity,
temperature and the velocity-temperature product, taken 2.8delta downstream
of the corner at y/delta = 0.7.
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Figure 5. Results from dual hot-wire technique. (a) correlation coefficient

RuT; (b) time-averaged form of the SRA. Circles represent incoming boundary
layer data, squares represent data taken 2.8delta downstream of the corner.
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Figure 6a. Images of shock wave boundary layer interaction obtained using

Rayleigh scattering technique. Flow over the 16 ° ramp is from
right to left. The intensity is a measure of the local density.
Incoming boundary layer conditions are as given in Table 1.



Figure 6b. Spanwise Rayleigh image in a 24 ° ramp air flow, downstream of the
corner. The laser sheet orientation is shown in Figure 6a. Flow is from top to
bottom of the picture. Shocks show up as regions where the brightness increases
(this is true as long as the temperature rise is relatively small). These images
indicate that more than one shock is present in the attachment region, and that
they are strongly wrinkled by the incoming turbulence.



Figure 7. Two Rayleigh scattering im.ages obtained in the 16° compression
corner flow, where the bottom image is seoarated in time from the top ima_ge
by 40 microseconds. Flow is from lett to right. The numbers refer to specitlc
features of one particular structure to aid recognition.
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Figure 8. Stanton number variation during startup, with
corrections calculated using the one-dimensional assumptions, and
with corrections estimated from the NEKTON calculations.
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Figure 9. Corrected Stanton number and skin

friction coefficient distributions along the face
of the ramp, using the freestream conditions
downstream of the shock.

Figure 10. Distribution of the Reynolds Analogy
factor in the compression ramp flow.


